Aaron D. Franklin

Franklin

Associate Professor in the Department of Electrical and Computer Engineering

Dr. Aaron Franklin received his Ph.D. in Electrical Engineering from Purdue University in 2008 and then spent six years on the research staff at the IBM T. J. Watson Research Center in Yorktown Heights, NY.  He is most widely known for his work on low-dimensional nanoelectronics with specific emphasis on carbon nanotube (CNT) transistors, including device scaling, transport studies, and advanced integration approaches.  While at IBM, Dr. Franklin was involved in many other projects with applications including photovoltaics, thin-film transistors, and supercapacitors.  Dr. Franklin joined the Duke faculty in 2014.

Research in the Franklin group is focused on improving the performance and functionality of nanomaterial-enabled electronic devices.  This includes high-performance devices from low-dimensional materials such as 2D crystals, carbon nanotubes, and nanowires.  Also included is the low-cost realm of printed electronics, which benefits from the incorporation of nanomaterials to enhance electrical transport over large printed features, among other application advantages.  The primary drive of the group's research is to improve performance for all electronic devices, including those with more custom form factors (flexibility, transparency, biocompatibility, etc.).  There are a growing variety of new electronics applications that nanomaterials are uniquely capable of enabling and the Franklin group works to make such applications possible.

Appointments and Affiliations

  • Associate Professor in the Department of Electrical and Computer Engineering
  • Director of Graduate Studies for the Department of Electrical and Computer Engineering
  • Associate Professor of Chemistry

Contact Information:

  • Office Location: CIEMAS 3473, Durham, NC 27708
  • Office Phone: (919) 681-9471
  • Email Address: aaron.franklin@duke.edu
  • Websites:

Education:

  • Ph.D. Purdue University, 2008
  • B.S.E. Arizona State University, 2004

Courses Taught:

  • ECE 230L: Introduction to Microelectronic Devices and Circuits
  • ECE 391: Projects in Electrical and Computer Engineering
  • ECE 392: Projects in Electrical and Computer Engineering
  • ECE 493: Projects in Electrical and Computer Engineering
  • ECE 494: Projects in Electrical and Computer Engineering
  • ECE 511: Foundations of Nanoscale Science and Technology
  • ECE 512: Emerging Nanoelectronic Devices
  • ECE 590: Advanced Topics in Electrical and Computer Engineering
  • ECE 899: Special Readings in Electrical Engineering
  • NANOSCI 511: Foundations of Nanoscale Science and Technology

In the News:

Representative Publications:

  • Lin, YC; McGuire, F; Franklin, AD, Realizing ferroelectric Hf0.5Zr0.5O2with elemental capping layers, Journal of Vacuum Science and Technology B, vol 36 no. 1 (2018) [10.1116/1.5002558] [abs].
  • Franklin, AD; Jena, D; Akinwande, D, 75 Years of the Device Research Conference - A History Worth Repeating, IEEE Journal of the Electron Devices Society (2017) [10.1109/JEDS.2017.2780778] [abs].
  • Cheng, Z; Price, K; Franklin, AD, Edge contacts to multilayer MoS2 using in situ Ar ion beam, Device Research Conference (DRC) (2017) [10.1109/DRC.2017.7999454] [abs].
  • Price, KM; Franklin, AD, Integration of 3.4 nm HfO2 into the gate stack of MOS2 and WSe2 top-gate field-effect transistors, Device Research Conference (DRC) (2017) [10.1109/DRC.2017.7999405] [abs].
  • McGuire, FA; Lin, YC; Rayner, B; Franklin, AD, MoS2 negative capacitance FETs with CMOS-compatible hafnium zirconium oxide, Device Research Conference (DRC) (2017) [10.1109/DRC.2017.7999478] [abs].